Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming
نویسنده
چکیده
In order to verify semialgebraic programs, we automatize the Floyd/Naur/Hoare proof method. The main task is to automatically infer valid invariants and rank functions. First we express the program semantics in polynomial form. Then the unknown rank function and invariants are abstracted in parametric form. The implication in the Floyd/Naur/Hoare verification conditions is handled by abstraction into numerical constraints by Lagrangian relaxation. The remaining universal quantification is handled by semidefinite programming relaxation. Finally the parameters are computed using semidefinite programming solvers. This new approach exploits the recent progress in the numerical resolution of linear or bilinear matrix inequalities by semidefinite programming using efficient polynomial primal/dual interior point methods generalizing those well-known in linear programming to convex optimization. The framework is applied to invariance and termination proof of sequential, nondeterministic, concurrent, and fair parallel imperative polynomial programs and can easily be extended to other safety and liveness properties.
منابع مشابه
Semidefinite Programming
3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...
متن کاملPartial Lagrangian relaxation for general quadratic programming
We give a complete characterization of constant quadratic functions over an affine variety. This result is used to convexify the objective function of a general quadratic programming problem (Pb) which contains linear equality constraints. Thanks to this convexification, we show that one can express as a semidefinite program the dual of the partial Lagrangian relaxation of (Pb) where the linear...
متن کاملA recipe for semidefinite relaxation for (0, 1)-quadratic programming - In memory of Svata Poljak
We review various relaxations of (0,1)-quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and simple way...
متن کاملLinear System Identification via EM with Latent Disturbances and Lagrangian Relaxation
In the application of the Expectation Maximization algorithm to identification of dynamical systems, internal states are typically chosen as latent variables, for simplicity. In this work, we propose a different choice of latent variables, namely, system disturbances. Such a formulation elegantly handles the problematic case of singular state space models, and is shown, under certain circumstan...
متن کاملOn Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic Programming
Two important topics in the study of Quadratically Constrained Quadratic Programming (QCQP) are how to exactly solve a QCQP with few constraints in polynomial time and how to find an inexpensive and strong relaxation bound for a QCQP with many constraints. In this thesis, we first review some important results on QCQP, like the S-Procedure, and the strength of Lagrangian Relaxation and the semi...
متن کامل